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Abstract. The free energy of semiflexible polymers is calculated as a functional of the compositional scalar
order parameter φ and the orientational order parameter of second-rank tensor Sij on the basis of a
microscopic model of wormlike chains with variable segment lengths. We use a density functional theory
and a gradient expansion to evaluate the entropic part of the free energy, which is given in a power series
of Qij = Sij/φ. The interaction term of the free energy is derived with a random phase approximation.
For the rigid rod limit, the nematic-isotropic transition point is given by Nwφ = 4.05141, N and w being
the degree of polymerization and the anisotropic interaction parameter, respectively, and the degree of
ordering at the transition point is 0.33448. We also find that the contour length of polymer chains becomes
larger in a nematic phase than in an isotropic phase. Interface profiles are obtained numerically for some
typical cases. In the neighborhood of isotropic-isotropic interfaces, polymer chains tend to align parallel to
the interface on the polymer-rich side and perpendicular on the poor side. When an isotropic region and
a nematic region coexist, orientational order parallel to the interface is preferred in the nematic region.

PACS. 61.25.Hq Macromolecular and polymer solutions; polymer melts; swelling – 61.30.Cz Theory
and models of liquid crystal structure – 64.70.Md Transitions in liquid crystals

1 Introduction

Much attention has been paid to liquid crystalline poly-
mers [1,2] because of the potential of industrial applica-
tions such as fibers with high tensile strength, synthetic
membranes, nonlinear optics and electro-optical devices.
Many liquid crystalline polymers are stiff due to mesogenic
units incorporated into the backbone of the polymer and
form a nematic ordered phase in suitable conditions. Ex-
tensive experimental [3–5] and theoretical [6–19] studies
have been focused on liquid crystalline polymers and their
mixtures. They exhibit a wide variety of phase behaviors
depending on temperature (thermotropic case), volume
fraction of liquid crystalline polymers (lyotropic case),
degree of polymerization, stiffness of the polymer chains
and their interactions. The richness of the phase behav-
iors arises from the coupling between compositional and
orientational order and isotropic and anisotropic interac-
tions between the components. Various types of phase dia-
grams have been shown theoretically and experimentally,
the shape of which is quite complex and sensitively de-
pends on physical properties of each system. As well as
phase transition between isotropic and nematic phases,
phase separation has been observed into isotropic and ne-
matic phases, two nematic phases with different polymer
concentrations, and two isotropic phases.

One of the aims of this article is to calculate the
free energy of semiflexible polymers with inhomogeneous
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fluctuations. Despite numerous papers on such systems,
not enough theoretical studies have been devoted to the
properties of inhomogeneous states with interfaces be-
tween phase-separated domains [13,18,20,21]. In order to
describe the properties of the phase behavior, orienta-
tional order as well as compositional order must be spec-
ified and the free energy is given as a functional of two
order parameters: a scalar order parameter representing
the volume fraction of polymers φ and an orientational
order parameter of second-rank tensor Sij which will be
defined below. Inhomogeneity is taken into account by
making a gradient expansion up to the second order in
the free energy. We assume that only fluctuations of long
wavelength are relevant to the morphology. Previous cal-
culations of the free energy of liquid crystalline polymers
or their mixtures in terms of the compositional and the
orientational order parameters used a microscopic model
of completely rigid rods and freely jointed chains [15], or
that of inextensible wormlike chains [14,16]. Our calcu-
lation is similar to that of Liu and Fredrickson [16] and
uses a density functional theory to calculate the entropic
part of the free energy. A significant difference between
our calculation and that of Liu and Fredrickson is that we
use a microscopic model of wormlike chains without the
constraint of constant segment length [22–24], while the
calculation of Liu and Fredrickson is based on inextensi-
ble wormlike chains. As discussed below, one of the ad-
vantages of dealing with such extensible wormlike chains
is that calculations can be performed systematically by
using the techniques of field theory [25] because we can
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utilize the Gaussian property of the single chain Hamilto-
nian. The result holds for arbitrary concentration φ and
is given by a Landau-de Gennes expansion with respect to
the orientational order per segment, Qij = Sij/φ, not Sij .
The expansion coefficients can be calculated for arbitrary
rigidity of the chain and are a function of the ratio of the
dimensionless elastic constant (or persistence length) to
the degree of polymerization. Although the expansion is
truncated up to fourth order in Qij in evaluating the bulk
part for arbitrary rigidity, rigorous expression for the bulk
part can be obtained for the rigid rod limit because the
expansion can be performed to infinite order in Qij . The
obtained energy for rigid rod limit can be used to investi-
gate the deep quench into the nematic phase in contrast to
the Landau-de Gennes free energy. The interaction energy
is calculated with a simple random phase approximation
and we incorporate the isotropic interaction which favors
demixing and the anisotropic Maier-Saupe interaction [8]
which tends to orient the segments parallel to each other.

By using the free energy, we will investigate the struc-
ture of interfaces between phase-separated domains. Since
the free energy is quite complicated, we calculate the in-
terface profile numerically and restrict ourselves to the
following typical cases: interfaces between two isotropic
regions and between an isotropic region and a nematic
region.

This paper is organized as follows: We define the order
parameters and the single chain Hamiltonian and calcu-
late the free energy in Section 2. Section 3 is devoted to a
discussion on the bulk properties by using the free energy
obtained in Section 2. In Section 4, we discuss the proper-
ties of interfaces between polymer-rich and polymer-poor
regions and show the profiles of the interface. We make a
brief conclusion in Section 5.

2 Calculation of the free energy

2.1 Order parameters and single chain Hamiltonian

We consider a system composed of homopolymers and de-
note the polymer species by K = A, B, and so on. We
specify the state of the system by the following two order
parameters. One is the volume fraction defined by

φK(r) =
v0

b

∑
α∈K

∫ NKb

0

dsδ(r−Rα(s)). (1)

Here NK is the degree of polymerization, v0 is the
monomer volume and b is the average distance between
adjacent monomers. Rα(s) represents the configuration of
the αth chain where s parameterizes the chain and runs
from 0 to NKb. We assume for simplicity that v0 and b
are common for all the monomer species.

The other is the orientational order parameter of
second-rank tensor

SKij(r) =

v0

b

∑
α∈K

∫ NKb

0

ds

[
Ṙαi (s)Ṙαj (s)−

1

d
δij

]
δ(r−Rα(s)),

(2)

where overdots denote derivative with respect to s and
d is the spatial dimension of the system. From the def-
inition SKij is symmetric and SKij = 0 in the isotropic
state. Notice that SKij is dimensionless and represents the
orientational order per unit volume.

The single chain Hamiltonian of polymer species K is
taken to be

HK{R(s)} = HK0 {R(s)}+HK1 {R(s)}. (3)

Here HK0 {R(s)} is the Hamiltonian of an unperturbed
chain and we take the following form [22–24]:

βHK0 {R(s)} =

∫ NKb

0

ds

{
d

2lKb
Ṙ(s)2 +

εKb

2
R̈(s)2

}
,

(4)

where β is the inverse temperature. The first term and
the second term in equation (4) represent the penalty for
the stretching and the bending of the chain, respectively.
We stress here that we do not impose the constraint of
|Ṙ| = 1, that is, the chains are stretchable and SKij de-
fined in equation (2) is not necessarily traceless. Imposing
the constraint

〈Ṙ(s)2〉0 ≡

∫
DRṘ(s)2e−βH

K
0∫

DRe−βH
K
0

= 1, (5)

we obtain the relation [24] (see Appendix, Eq. (A.5))

lK =
4εK
d
· (6)

All the calculations below are done under the condition of
equation (6).

The HK1 is the source term given by

βHK1 {R(s)} =

∫
dr

∫ NKb

0

ds
{
hφK (r) + hSKij (r)

×

[
Ṙi(s)Ṙj(s)−

1

d
δij

]}
v0

b
δ(r−R(s)),

(7)

where we have introduced the fields hφK (r) and hSKij (r).
Hereafter summation over repeated indices are implied.

2.2 Free energy of non-interacting chains
(entropic part)

2.2.1 Density functional theory

We consider here the free energy of the ideal system com-
posed of non-interacting chains. We take the density func-
tional approach similar to that of Tang and Freed [26] for
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the Gaussian chain system with no rigidity. The grand
partition function for the ideal system is

Ξideal =
∏
K

ΞKideal, (8)

where the grand partition function for the component K
is

ΞKideal =
∞∑

nK=0

1

nK !
z0K

nK = exp(z0K). (9)

The z0K is the partition function of a single chain

z0K = Z̃K

∫
DR(s) exp(−β(HK0 {R(s)}+HK1 {R(s)}))

= ZK

〈
exp

(
−
v0

b

∫ NKb

0

ds (hφK (R(s))

+

[
Ṙi(s)Ṙj(s)−

1

d
δij

]
hSKij (R(s))

))〉
0

,

(10)

where Z̃K is the contribution from the kinetic energy and
ZK = Z̃K

∫
DR(s) exp(−βHK0 {R(s)}).

The free energy of the ideal system is given by the
following Legendre transform

βFideal{φK , SKij} = − lnΞideal

+
∑
K

∫
dr

(
hφK (r)

δ lnΞideal
δhφK (r)

+ hSKij (r)
δ lnΞideal
δhSKij (r)

)
=
∑
K

(
−z0K+

∫
dr

(
hφK (r)

δz0K

δhφK (r)
+hSKij(r)

δz0K

δhSKij (r)

))
.

(11)

We identify the order parameters φK and SKij with the
average value, i.e.,

φK(r) = −
δ lnΞideal
δhφK (r)

= −
δz0K

δhφK (r)
, (12)

SKij(r) = −
δ lnΞideal
δhSKij (r)

= −
δz0K

δhSKij (r)
· (13)

From equations (7, 10, 12) we obtain

φK(r)= Z̃K

∫
DR(s) exp(−β(HK0 {R(s)}+HK1 {R(s)}))

×
v0

b

∫ NKb

0

dsδ(r−R(s)).

(14)

Hence ∫
drφK(r) = v0NKz0K . (15)

By using equations (11, 12, 13, 15) the free energy Fideal
is finally expressed in terms of φK , SKij , hφK and hSKij
as

βFideal{φK , SKij} = −
∑
K

∫
dr
( 1

v0NK
φK(r)

+ hφK (r)φK(r) + hSKij (r)SKij(r)
)
.

(16)

Our remaining task to obtain the functional form of
Fideal{φK , SKij} is to express hφK and hSKij in terms of
φK and SKij through inverting equations (12, 13).

Calculation of z0K is necessary to obtain the expression
of φK and SKij in terms of hφK and hSKij . However, we
cannot calculate equation (10) for the Hamiltonian (4)
analytically. Therefore we make a gradient expansion up
to second order for the evaluation of equation (10) because
we are interested only in the long-wavelength fluctuations.

We make a gradient expansion for hφK (R(s)) and
hSKij (R(s)) around the center of gravity of the chain

RG ≡ (1/NKb)
∫NKb

0 dsR(s) [16]. Then equation (10) be-
comes

z0K ' ZK
∫
dr exp

(
−v0NK(hφK (r)− 1

d
hSKll(r))

)
×

〈
exp

{
+ + + +

}〉
0

,
(17)

where we have defined the following graphs for brevity:

=−
1

2

v0

b
∂i∂jhφK

∫ NKb

0

ds(R(s)−RG)i(R(s)−RG)j ,

(18)

=
1

2

v0

b

1

d
∂i∂jhSKll

∫ NKb

0

ds(R(s)−RG)i(R(s)−RG)j ,

(19)

= −
v0

b
hSKij

∫ NKb

0

dsṘi(s)Ṙj(s), (20)

= −
v0

b
∂khSKij

∫ NKb

0

ds(R(s)−RG)kṘi(s)Ṙj(s),

(21)

= −
1

2

v0

b
∂k∂lhSKij

∫ NKb

0

ds(R(s)−RG)k(R(s)

−RG)lṘi(s)Ṙj(s). (22)

In the above graphs open vertex and filled vertices denote
hφK and hSKij , respectively. Dashed lines imply taking
derivatives of the fields hφK and hSKij and that R(s) −

RG appears in the integrands. Solid lines imply that Ṙ
appears in the integrands.
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2.2.2 Zeroth order calculation in the gradients

We consider the zeroth order terms in the gradients in
equation (17), that is, we retain only the graph (20) in
equation (17). Since ln〈exp(· · · )〉0 is equal to the sum of
the connected graphs [25], we obtain

z
(0)
0K = ZK

∫
dr exp(η0{hφK (r), hSKij (r)}), (23)

with

η0{hφK (r), hSKij (r)} = −v0NKhφK (r) +

+
4

3
+ 2 + · · · , (24)

where

=
(
−
v0

b

)2

h̃SKij h̃SKij

∫ NKb

0

ds1∫ NKb

0

ds2c1(s1, s2)c1(s1, s2), (25)

and so on. Here h̃SKij ≡ (hSKij+hSKji)/2 is the symmetric
part of hSKij and we have defined the two point correlation
function

= c1(s1, s2)δij = 〈Ṙi(s1)Ṙj(s2)〉0. (26)

In equation (A.5) we give the explicit form of c1(s1, s2).
Note that when equation (6) holds, hSKll appearing in the
first line of equation (17) is cancelled out by the first order
graph in hSKij .

We truncate the calculation of equation (23) up to

fourth order in h̃SKij . After some calculations we obtain
from equations (12, 13, 23)

ln

(
φK(r)

v0NKZK

)
= −v0NKhφK (r)

+

(
−v0

NK

d

)2

D2(dNK/εK)h̃SKij (r)h̃SKij (r)

+
4

3

(
−v0

NK

d

)3

D3(dNK/εK)h̃SKij (r)h̃SKjk (r)h̃SKki(r)

+2

(
−v0

NK

d

)4

D4(dNK/εK)h̃SKij (r)h̃SKjk (r)h̃SKkl(r)h̃SKli(r),

(27)

d QKij(r) = 2

(
−v0

NK

d

)
D2(dNK/εK)h̃SKij (r)

+ 4
(
−v0

NK
d

)2

D3(dNK/εK)h̃SKik(r)h̃SKkj (r)

+ 8
(
−v0

NK
d

)3

D4(dNK/εK)h̃SKik(r)h̃SKkl (r)h̃SKlj (r),

(28)

where

QKij(r) ≡ SKij(r)/φK(r) (29)

is the orientational order per segment (notice that Sij is
the orientational order per volume) and D2, D3 and D4

are defined by

D2(dNK/εK) = I2(dNK/εK), (30)

D3(dNK/εK) = 3I2(dNK/εK)− 2I3(dNK/εK), (31)

D4(dNK/εK) =
5

2
I4(dNK/εK)− 6I3(dNK/εK)

+ 4I2(dNK/εK) +
1

2
(I2(dNK/εK))2.

(32)

Here we have defined

In(x) =
n!

(−x)n

(
e−x −

n−1∑
k=0

(−x)k

k!

)
. (33)

Inversion of equations (27, 28) gives

v0NKh
(0)
φK

(r) = − ln

(
φK(r)

v0NKZK

)
d2

4D2
QKij(r)QKij(r)

−
d3D3

3D3
2

QKij(r)QKjk(r)QKki(r)

+
3d4(2D2

3 −D2D4)

8D5
2

QKij(r)QKjk(r)QKkl(r)QKli(r),

(34)

−
2v0NK

d
h̃

(0)
SKij

(r) =
d

D2
QKij(r) −

d2D3

D3
2

QKik(r)QKkj(r)

+
d3(2D2

3 −D2D4)

D5
2

QKik(r)QKkl(r)QKlj(r). (35)

The superscripts (0) denote the zeroth order part in the
gradients.

Substituting equations (34, 35) into equation (16), we
finally obtain the ideal free energy to the zeroth order in
the gradients (or the ideal bulk energy)

βv0F
(0)
ideal =

∑
K

∫
drf

(0)
K {φK(r), QKij(r)}, (36)

with

f
(0)
K {φK(r), QKij(r)} =

φK(r)

NK
(lnφK(r)− ln v0NKZK − 1)

+ φK(r)

{
1

2
AK2QKij(r)QKij(r)

+
1

3
AK3QKij(r)QKjk(r)QKki(r)

+
1

4
AK4QKij(r)QKjk(r)QKkl(r)QKli(r)

}
,

(37)

where

AK2 =
d2

2D2NK
, (38)
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AK3 = −
d3D3

2D3
2NK

, (39)

AK4 =
d4(2D2

3 −D2D4)

2D5
2NK

· (40)

We conclude this subsection by noting that η0 defined in
equation (24) can be evaluated rigorously in the rigid rod
limit (NK/εK → 0) and that we obtain the following re-
sults:

v0NKh
(0)
φK

= − ln

(
φK

v0NKZK

)
−

1

2
Tr ln(1 + dQKij)

−
1

2
(1 + dQK)−1

ik dQKki,

(41)

−
2v0NK

d
h̃

(0)
SKij

= (1 + dQK)−1
ik dQKkj , (42)

f
(0)
K {φK(r), QKij(r)} =

φK(r)

NK
(lnφK(r)− ln v0NKZK − 1)

+
φK(r)

2NK
{−Tr ln(1 + dQKij) + dQKii} , (43)

where 1 is a d × d unit matrix and (1 + dQK)−1
ij is the

element of the inverse matrix of 1 + dQKij . Tr implies
taking the trace of a matrix. Equation (43) can be used
for the evaluation of the order parameter for a deep quench
into a nematic phase in contrast to the free energy in a
Landau expansion such as equation (36).

2.2.3 Second order calculation in the gradients

We can straightforwardly extend the calculation of z0K to
the second order in the gradients. We have

z0K ' ZK

∫
dr exp(η0{hφK(r), hSKij (r)}

+ η2{hφK (r), hSKij (r)}). (44)

Here η0{hφK (r), hSKij (r)} is defined in equation (24) and

η2{hφK (r), hSKij (r)} = + 2 + 4

+ + 2 + 2

+ 2 + 2 + 8 , (45)

where we have retained only the terms up to second order
in hSKij and

= c2(s1, s2)δij = 〈(R(s1)−RG)iṘj(s2)〉0, (46)

= c3(s1, s2)δij = 〈(R(s1)−RG)i(R(s2)−RG)j〉0.
(47)

Explicit forms of c2(s1, s2) and c3(s1, s2) are given in equa-
tion (A.5). Note that

+ = 0, (48)

+ = 0, (49)

when equation (6) holds and that

= 0, (50)

= 0. (51)

We write the fields hφK and hSkij as

hφK = h
(0)
φK

+ h
(2)
φK

+ · · · , (52)

hSKij = h
(0)
SKij

+ h
(2)
SKij

+ · · · (53)

Here h
(0)
φK

and h
(0)
SKij

are given in equations (34, 35), re-

spectively, and h
(2)
φK

and h
(2)
SKij

are the second order terms

in the gradients. Then we obtain, after some calculations,

exp(η0 + η2) '
φK

v0NKZK
(1 + η2{h

(0)
φK
, h

(0)
SKij
})

−
1

ZK
(φKh

(2)
φK

+ SKijh
(2)
SKij

). (54)

Here use has been made of equations (27, 28). Equation
(12) together with equation (44) yields

φK

v0NKZK
= exp(η0 + η2) + ∂i∂jGij{hφK , hSKij}. (55)

The explicit form of Gij is not necessary in the discussion
below. Equations (54, 55) yield

φKh
(2)
φK

+ SKijh
(2)
SKij

=
φK

v0NK
η2{h

(0)
φK
, h

(0)
SKij
}−ZK∂i∂jGij .

(56)

From equations (16, 36, 52, 53, 56) we can write the ideal
free energy up to the second order in the gradients as

βv0Fideal =
∑
K

∫
dr(f

(0)
K {φK(r), QKij(r)}

+ f
(2)
K {φK(r), QKij(r)}), (57)
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f
(2)
K {φK(r), QKij(r)} =

1

2φK

(
CK00δij + CK01QKij +

1

2
CK02QKikQKkj

)
(∂iφK)(∂jφK)

+(∂iφK)∂j

(
LK0QKij +

1

2
LK01δijQKklQKkl +

1

2
LK02QKikQKkj

)
+

1

2
LK1φK∂kQKij∂kQKij

+
1

2
φK(LK21∂iQKij∂kQKkj + LK22∂kQKij∂iQKjk).

(59)

Table 1. Coefficients in f
(2)
K for the rigid rod limit(N/ε →

0) and the flexible limit(N/ε → ∞). The subscripts K’s are
omitted.

rigid rod limit flexible limit

C00 Nb2/12d 2b2ε/3d2

C01 Nb2/12 4b2ε/3d

C02 O((N/ε)2) 4b2ε/3

L1 dNb2/24 b2ε/6

L21 dNb2/12 O(ε2)

L22 dNb2/12 4b2ε/3

L0 Nb2/12 b2ε/d

L01 O((N/ε)2) −b2ε/12

L02 O((N/ε)2) b2ε

with the second order term in the gradients

f
(2)
K {φK(r), QKij(r)} = −

φK(r)

NK
η2{h

(0)
φK

(r), h
(0)
SKij

(r)}.

(58)

The calculation of η2 is cumbersome but straightforward.
Here we give only the final result of the calculation.

See equation (59) above.

The coefficients appearing in equation (59) are the func-
tions of NK/εK and can be calculated for arbitrary
NK/εK . However the explicit form of the coefficients is
quite complicated. Thus we present the results separately
in Appendix B and in Table 1 we show the values of the
coefficients for the two limiting cases: the rigid rod limit
(NK/εK → 0) and the flexible limit (NK/εK →∞).

2.3 Free energy of interacting chains

In order to incorporate the interaction terms into the free
energy, we employ here a simple random phase approxima-
tion (RPA). In the RPA response of polymers to external
fields is considered to be the same as that of ideal poly-
mers, however the fields acting on polymers are corrected
to take into account monomer interactions.

The effective fields acting on polymers are taken to be

heffφK = hφK −
1

2v0

∑
K′

εKK′φK′ + V, (60)

heffSKij
= hSKij −

1

2v0

∑
K′

wKK′ S̃K′ij , (61)

where εKK′ is the isotropic interaction parameter between
polymer species K and K’ and wKK′ is the Maier-Saupe
anisotropic interaction parameter. The S̃Kij is the trace-
less part of SKij . Note that the “true” orientational order
is expressed by the traceless part of SKij . Although we
can incorporate interactions associated with the trace of
SKij (or the fluctuation of the segment length), we do not
consider them here. The field V should be added to equa-
tion (60) if the system is considered to be incompressible
(
∑
K

∫
drφK(r) = 1). The fields hφK and hSKij appearing

in the right hand side of equations (12, 13) are replaced by

heffφK and heffSKij
and the final expression for the free energy

is

βv0F =
∑
K

∫
dr(f

(0)
K {φK(r), QKij(r)}

+ f
(2)
K {φK(r), QKij(r)})

+

∫
drfint{φK(r), QKij(r)}, (62)

where f
(0)
K and f

(2)
K are given in equations (37) (or (43)

for the rigid rod limit) and (59), respectively and

fint{φK(r), QKij(r)} = −
1

2

∑
K

∑
K′

(εKK′φK(r)φK′(r)

+ wKK′ S̃Kij(r)S̃K′ij(r)).
(63)

For an incompressible blend equation (63) can be written,
by setting φA = φ and φB = 1− φ,

fint = χφ(1− φ) −
1

2
(εAAφ+ εBB(1− φ))

−
1

2
(wAAS̃AijS̃Aij + 2wABS̃AijS̃Bij + wBB S̃BijS̃Bij),

(64)

where χ = (εAA + εBB − 2εAB)/2 is the usual Flory inter-
action parameter.
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3 Bulk behavior

3.1 Orientational order

We discuss here the isotropic-nematic phase transition
of rigid rods without density modulation (φ is constant
throughout the sample during the phase transition). We
also suppose here that only one component can have an
orientational order, thus we omit the subscript K in this
section. We assume that the orientational order can be
described by the following uniaxial form:

Qij = Q

(
ninj −

1

d
δij

)
. (65)

Here ni is a unit vector of arbitrary direction and Q rep-
resents the degree of nematic ordering. For the rigid rod
limit (N/ε → 0), the free energy is given by equations
(43, 64) as

f =
φ

2N
{−Tr ln(1 + dQij) + dQii} −

1

2
wφ2QijQij ,

(66)

where the part of the free energy independent of Qij is
omitted. Substituting equation (65) into equation (66),
we obtain for d = 3

f =
φ

2N

{
− ln((1−Q)2(1 + 2Q))−

2Nwφ

3
Q2

}
, (67)

and the orientational order Q is the solution of ∂f/∂Q =
0, which is equivalent to

Q

(
9

2Nwφ
− (1−Q)(1 + 2Q)

)
= 0. (68)

Equation (68) can be easily solved and has an obvious
solution Q = 0 and

Q =
1

4
±

3

4

√
1−

4

Nwφ
(69)

for Nwφ > 4. We show in Figure 1 the orientational order
Q as a function of Nwφ. The upper branch with positiveQ
corresponds to normal nematic phase. Negative Q implies
that polymers are oriented perpendicular to n and repre-
sents the discotic phase. Similar result has been obtained
in reference [17]. Metastable nematic phase appears at

(Nwφ)∗ = 4 (70)

and the corresponding order parameter is

Q∗ =
1

4
· (71)

Isotropic state becomes unstable at

(Nwφ)∗∗ =
9

2
· (72)
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Fig. 1. Dependence of the orientational order Q on the pa-
rameter Nwφ. Dotted lines are unstable branches. Filled circle
implies the nematic-isotropic transition point.

At the nematic-isotropic transition point, the free energy
of the nematic phase is equal to that of the isotropic phase
(= 0) and the transition point is given by

(Nwφ)c = 4.05141, (73)

which is shown by a filled circle in Figure 1. When w is
independent of N or φ, lyotropic transition point φc is
proportional to N−1, which reproduces qualitatively the
results of Onsager [6,28] and Flory [7,28]. The degree of
ordering Q for the nematic phase at the transition point
is

Qc = 0.33448, (74)

which is independent of N , w and φ and smaller than the
value obtained by Onsager (Q ' 0.84) [6,28] or that by
Maier and Saupe (Q ' 0.44) [8,28]. Finally we note that
the width of the coexisting region of nematic and isotropic
phases is proportional to N−1 and that the phase coexis-
tence becomes more difficult with increasing the degree of
polymerization.

3.2 Fluctuation of contour length

So far we have neglected the trace of Qij . We have stressed
that the order parameter Qij is not necessarily traceless
as in the usual case [28] because we deal with extensible
chains. The trace of Qij implies the fluctuation of the
segment length of the chain. If we take Qij as

Qij = λδij +Q

(
ninj −

1

d
δij

)
, (75)

the entropic part of the bulk energy is

f =
φ

2N

{
− ln((1 + 3λ−Q)2(1 + 3λ+ 2Q)) + 9λ

}
.

(76)
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Equation (76) is minimized for fixed Q at

λ =
1

6

{
−(1 +Q) +

√
(1 +Q)2 + 8Q2

}
> 0, (77)

which implies that segment length (or contour length) of
polymer chains becomes larger in the ordered phase. The
configuration of a semiflexible polymer chain in a nematic
phase has been investigated theoretically [19,29] and it
has been shown that polymer chains are stretched in the
nematic phase. However, most of the theoretical studies
are based on the microscopic model of polymer chains of
constant segment length and the neutron scattering ex-
periment [30] shows a stronger anisotropy than expected
theoretically. The elongation of the contour length may ex-
plain this stronger anisotropy, although quantitative com-
parison is difficult because the free energy cannot be eval-
uated rigorously for chains of arbitrary rigidity.

4 Interfacial properties

In this section we discuss the properties of the interfaces
between polymer-rich and polymer-poor regions. Since the
form of the free energy obtained before is quite compli-
cated, we restrict ourselves to some typical cases and show
the results obtained numerically.

We consider a binary polymer blend and assume that
only polymers of one species (denoted by A below) pos-
sess orientational order. The free energy for this system
in terms of the order parameters φ = φA and Qij = QAij
can be written as

v0 βF =

∫
dr

{
φ

N
lnφ+

1− φ

N ′
ln(1− φ) + χφ(1− φ)

−
φ

2N
Tr{log(1 + dQij)− dQii} −

1

2
wφ2Q̃ijQ̃ij

+
1

2

(
C0

φ
+

C′0
1− φ

)
(∂iφ)2

+ L0

(
∂iφ∂jQij +

1

2φ
Qij∂iφ∂jφ

)
+

1

2
L1φ(∂kQij)

2 +
1

2
L2φ (∂iQij∂kQkj + ∂kQij∂iQjk)

}
.

(78)

with C0 = Nb2/12d, L0 = Nb2/12, L1 = dNb2/24 and
L2 = dNb2/12, where rigid rod limit is taken. In the
numerical calculation shown below, we set N ′ = N and
C′0 = C0 for simplicity.

We take the z-axis perpendicular to the plane inter-
face (x-y plane) and assume that φ(r) and Qij(r) depend
only on z and that Qij is traceless. We also assume that
the principal axis of Qij lies on the x-z plane throughout
the system (which can be realized by a rotation around
the z-axis) and set Qxy = Qyz = 0. We find a solution
which minimizes the free energy (78) by numerically solv-
ing

δF

δφ(z)
= µ, (79)
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Fig. 2. Order parameter profiles for an isotropic-isotropic in-
terface with χN = 2.05 and wN = 0. Note that Qxx = Qyy
throughout the system. Length z is measured in unit of Nb.

δF

δQij(z)
= ν(z)δij , (80)

under the boundary conditions limz→±∞ dφ(z)/dz =
limz→±∞ dQij(z)/dz = 0, limz→−∞ φ(z) = φ1 and
limz→∞ φ(z) = φ2 with φ1 < φ2. The Lagrange multi-
pliers µ and ν(z) are associated with the conservation of
φ and the tracelessness of Qij , respectively.

First we consider an interface between an isotropic A-
poor region and an isotropic A-rich region. We show in
Figure 2 the order parameter profiles obtained numerically
by setting χN = 2.05 and wN = 0. We find that on the
A-poor side (z < 0), Qzz > 0 and Qxx, Qyy < 0, while
Qzz < 0 and Qxx, Qyy > 0 on the A-rich side (z > 0). We
also find that Qxz = 0 throughout the system. This result
indicates that polymer chains of species A are oriented
perpendicular on the A-poor side and parallel on the A-
rich side. A similar behavior has been found in a lattice
model [20] and for flexible polymers [21]. We also note that
the rotational symmetry around the z-axis is not broken
for this system.

Next we seek a solution for an interface between an
isotropic A-poor region and a nematic A-rich region. We
set χN = 2.7 and wN = 4.8 and the order parameter pro-
files are shown in Figure 3. We find a region on the A-poor
side where polymer chains are oriented perpendicular to
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Fig. 3. Order parameter profiles for an isotropic-nematic in-
terface with χN = 2.7 and wN = 4.8.

the interface (Qzz > 0) as in the previous case, although
the magnitude of the orientational order is small. There
exists a transient biaxial region at the interface (z ≈ 0)
and in a nematic region, the orientational order parallel
to the interface can be observed. Notice that the orienta-
tional order parallel to the interface is attributed to the
coupling terms proportional to L0 in equation (78), be-
cause they lower the free energy of the interface when
Qzz < 0 and Qzz decreases with the increase of φ.

5 Conclusion

We have calculated the free energy of an inhomogeneous
system composed of semiflexible polymers. Our calcula-
tions are based on the microscopic model of wormlike
chains without the constraint of constant segment length
and the free energy can be given in a gradient expan-
sion and an expansion with respect to Qij = Sij/φ, ori-
entational order per segment. The expansion coefficients
can be evaluated for arbitrary stiffness (εK in Eq. (4)) of
the chain and the bulk entropic part of the free energy
can be rigorously calculated for the rigid rod limit. From
the bulk free energy for the rigid rod limit, we have cal-
culated the nematic-isotropic transition point and found
that the contour length of the polymer chain is larger
in a nematic phase than in an isotropic phase. Previous

theoretical works have paid little attention to the fluctua-
tion of contour length and it may explain the discrepancy
between theories and experiments for the configuration of
polymer chains in a nematic phase.

We have also investigated the properties of interfaces
between two coexisting phases by numerically finding or-
der parameter profiles for the interfaces which minimize
the free energy. We have found for isotropic-isotropic and
isotropic-nematic interfaces that polymer chains on the
polymer-poor side tend to orient perpendicular to the in-
terface, while on the polymer-rich side orientational order
parallel to the interface is preferred.

The author is grateful to Dr. Akihiko Matsuyama for helpful
comments. He also thanks Professor Akira Onuki for useful
comments and critically reading this manuscript. Part of this
work is supported by Grants in Aid for Scientific Research from
the Ministry of Education, Science and Culture.

Appendix A: Two point correlation functions

In this Appendix we derive the explicit form for the
two point correlation functions c1(s1, s2), c2(s1, s2) and
c3(s1, s2) defined by equations (26, 46, 47).

Here we introduce the Fourier transform of R(s) [24]

R(s) =
1
√

2π

∫ ∞
−∞

dqRqe
iqs. (A.1)

The summation over q is replaced by an integral, which
corresponds to supposing an infinite chain. This treat-
ment greatly simplifies the calculation because we can ne-
glect the inhomogeneity due to the end of the chain [23],
although it may play an important role in actual poly-
mers [27].

The single chain Hamiltonian is defined in equation (4)
and can be written using Rq as

βH0{Rq} =
1

2

∫ ∞
−∞

dq

(
d

lb
q2 + εbq4

)
RqR−q. (A.2)

Hereafter we omit the subscript K. From equation (A.2)
we get

〈RqiR−qj〉0 =
1

d
lbq

2 + εbq4
δij . (A.3)

We obtain from equations (26, A.1, A.3)

c1(s1, s2) =
1

2π

∫ ∞
−∞

dq
eiq(s1−s2)

d
lb

+ εbq2

=
1

2

√
l

dε
exp

{
−

√
d

lε

|s1 − s2|

b

}
.

(A.4)

We can derive equation (6) using equation (A.4) and notic-

ing that 〈Ṙ(s)2〉0 = dc1(s, s). Using (6) we can write equa-
tion (A.4) as

c1(s1, s2) =
1

d
exp

{
−
d

2ε

|s1 − s2|

b

}
. (A.5)
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c2(s1, s2) =
1

2πNb

∫ ∞
−∞

dq
1

d2

4εb q
2 + εbq4

e−iqs2(−iqNbeiqs1 − 1 + eiqNb)

=
4ε

d2N

(
s2 −

Nb

2

)
+

2εb

d2

s1 − s2

|s1 − s2|

(
1− exp

(
−

d

2εb
|s1 − s2|

))
+

8ε2b

d3N
exp

(
−
dN

4ε

)
sinh

(
−

d

2εb

(
s2 −

Nb

2

))
. (A.7)

c3(s1, s2) =
1

2πNb

∫ ∞
−∞

dq
1

d2

4εb q
2 + εbq4

(
eiqs1 +

1

iqNb
(1− eiqNb)

)
×

(
e−iqs2 −

1

iqNb
(1− e−iqNb)

)
=

32ε4b2

d5N2

(
1− exp

(
−
dN

2ε

))
+

16ε3b2

d4N
+

4εNb2

3d2

−
2εb

d2
(s1 + s2 + |s1 − s2|) +

2ε

d2N
(s2

1 + s2
2)−

4ε2b2

d3
exp

(
−

d

2εb
|s1 − s2|

)
−

16ε3b2

d4N
exp

(
−
dN

4ε

)(
cosh

(
d

2εb

(
Nb

2
− s1

))
+ cosh

(
d

2εb

(
Nb

2
− s2

)))
. (A.8)

Before discussing c2(s1, s2) and c3(s1, s2), we write the
center of gravity RG in terms of Rq:

RG =
1

Nb

∫ Nb

0

ds
1
√

2π

∫ ∞
−∞

dqRqe
iqs

=
1
√

2π

∫ ∞
−∞

dqRq
1

iqNb
(eiqNb − 1).

(A.6)

Using (6, 46, 47, A.1, A.3, A.6) we can write c2(s1, s2)
c3(s1, s2) as

See equations (A.7, A.8) above.

Appendix B: Explicit form of the coefficients

in f
(2)
K

Here we give the explicit form of the coefficients in equa-
tion (59). Throughout this appendix we omit the sub-
scripts K. We present only the final results, which are
given by

C00 =
Nb2

12d
E1, (B.1)

C01 =
Nb2

12D2
E1, (B.2)

C02 =
dNb2

6D3
2

(D2E3 −D3E2), (B.3)

L1 =
dNb2

24D2
2

F1, (B.4)

L21 =
dNb2

12D2
2

F2, (B.5)

L22 =
dNb2

12D2
2

F3, (B.6)

L0 =
Nb2

12D2
F4, (B.7)

L01 =
dNb2

24D2
2

(F1 − F5), (B.8)

L02 =
dNb2

6D3
2

(D2F6 −D3F4). (B.9)

Here D1, D2 and D3 are defined in equations (30, 31, 32)
and

E1 = I4(dN/2ε), (B.10)

E2 = −
4

5
I5(dN/2ε)−

16

5
I5(dN/ε) + I4(dN/2ε)

+ 4I4(dN/ε), (B.11)

E3 =
2

5
I6(dN/2ε) +

88

15
I6(dN/ε)−

4

5
I5(dN/2ε)

−
64

5
I5(dN/ε) +

1

2
I4(dN/2ε)I2(dN/ε)

+
1

2
I4(dN/2ε) + 6I4(dN/ε) +

4

3
I3(dN/ε), (B.12)
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F1 = 9I4(3dN/2ε)− 8I3(dN/ε), (B.13)

F2 = −
3

10
I5(dN/2ε)−

24

5
I5(dN/ε) +

81

10
I5(3dN/2ε)

+ 2I4(dN/2ε)− 4I4(dN/ε),
(B.14)

F3 =
3

10
I5(dN/2ε) +

24

5
I5(dN/ε)−

81

10
I5(3dN/2ε)

− I4(dN/2ε)− 4I4(dN/ε) + 9I4(3dN/2ε),
(B.15)

F4 = 2I4(dN/ε)− I4(dN/2ε), (B.16)

F5 =
8

15
I5(dN/2ε)−

8

15
I5(dN/ε) + 2I4(dN/2ε)I2(dN/ε)

−
8

3
I3(dN/2ε)I2(dN/ε)−

2

3
I4(dN/2ε)−

4

3
I4(dN/ε)

+ 9I4(3dN/2ε)−
16

3
I3(dN/ε),

(B.17)

F6 =
13

20
I5(dN/2ε)−

16

15
I5(dN/ε) +

81

20
I5(3dN/2ε)

−
1

2
I4(dN/2ε),

(B.18)

where In is defined in equation (33).
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